

Commission Staff Report - DRAFT

DATE: April 26, 2017

COMMISSION MEETING DATE: May 25, 2017

SUBJECT: 2017 Geothermal Facility Operating Protocol – Steam Field Operations Forecast Report April 2017; Applicable to the following projects: Geothermal

AGENDA CATEGORY: Consent

FROM:	Ken Speer	METHOD OF SELECTION:
	Assistant General Manager	N/A
Division:	Generation Services	
Department:	Geothermal	

IMPACTED MEMBERS:					
All Members		City of Lodi	\boxtimes	City of Ukiah	\boxtimes
Alameda Municipal Power	\boxtimes	City of Lompoc	\boxtimes	Plumas-Sierra REC	\boxtimes
Bay Area Rapid Transit		City of Palo Alto		Port of Oakland	
City of Biggs	\boxtimes	City of Redding		Truckee Donner PUD	
City of Gridley	\boxtimes	City of Roseville	\boxtimes	Other	
City of Healdsburg	\boxtimes	City of Santa Clara	\boxtimes	If other, please specify.	

Steam Field Operations Forecast Report – April 2017 April 26, 2017 Page 2

RECOMMENDATION:

Adopt Resolution 17-XX approving the 2017 Steam Field Operations Forecast Report dated April 2017 as the Geothermal Operating Protocol effective July 1, 2017. This Operating Protocol is to remain in effect until replaced by the Commission.

BACKGROUND:

The Steam Field Operations Forecast Report is an in depth study of The Geysers reservoir relative to the operation of NCPA's Geothermal facility and provides a generation forecast of the facility. This report will act as the Operating Protocol with the goal of maximizing the generation output.

The Operating Protocol currently uses a two-zone strategy with wells on the west side of the NCPA lease producing to both Plant #1, Units #1and #2. Wells on the east side of the NCPA lease produce to Plant #2, Unit #4. This Protocol will maximize generation while allowing for scheduling flexibility and reduction of load under the proper economic conditions. The Protocol establishes a 2017 annual generation target of 99.3 gross MW.

FISCAL IMPACT:

The 2017-18 approved Geothermal budget covers the proposed action.

SELECTION PROCESS:

Not Applicable.

ENVIRONMENTAL ANALYSIS:

This activity would not result in a direct or reasonably foreseeable indirect change in the physical environment and is therefore not a "project" for purposes of Section 21065 the California Environmental Quality Act. No environmental review is necessary.

COMMITTEE REVIEW:

Committee Review Pending.

Steam Field Operations Forecast Report – April 2017 April 26, 2017 Page 3

Respectfully submitted,

RANDY S. HOWARD General Manager

Attachments: (2)

- Resolution
- Steam Field Operations Forecast Report April 2017

RESOLUTION 17-XX

RESOLUTION OF THE NORTHERN CALIFORNIA POWER AGENCY APPROVING THE 2017 STEAM FIELD OPERATIONS FORECAST REPORT AS THE 2017 GEOTHERMAL OPERATING PROTOCOL

(Reference Staff Report #xxx:17)

WHEREAS, the Northern California Power Agency (NCPA) operates and maintains on behalf of the project owners a Geothermal Facility near Middletown, CA, consisting of two power plants with containment areas, and 80 steam production and injection wells connected by roads; and

WHEREAS, the 2017 Steam Field Operations Forecast Report is an in depth study of The Geysers reservoir relative to the operation of NCPA's Geothermal facility and provides a generation forecast of the facility. This report will act as the Operating Protocol with the goal of maximizing the generation output. The Operating Protocol currently uses a two-zone strategy with wells on the west side of the NCPA lease producing to Plant 1, Units #1 and #2. Wells on the east side of the NCPA lease produce to Plant #2, Unit #4. This Protocol will maximize generation while allowing for scheduling flexibility and reduction of load under the proper economic conditions. The Protocol establishes a 2017 annual generation target of 99.3 MW gross; and

WHEREAS, 2017-18 approved budget covers the proposed action; and

WHEREAS, this activity would not result in a direct or reasonably foreseeable indirect change in the physical environment and is therefore not a "project" for purposes of Section 21065 the California Environmental Quality Act. No environmental review is necessary; and

NOW, THEREFORE BE IT RESOLVED that the Commission of the Northern California Power Agency adopts the Steam Field Operations and Forecast Report dated April 2017 as the Geothermal Operating Protocol effective July 1, 2017, to remain in effect until replaced by the Commission.

PASSED, ADOPTED and APPROVED this _	day of	, 2017 by the following vote
on roll call:		

	<u>Vote</u>	<u>Abstained</u>	<u>Absent</u>
Alameda			
BART			
Biggs			
Gridley			
Healdsburg			
Lodi			
Lompoc			
Palo Alto			
Port of Oakland			
Redding			
Roseville			
Santa Clara			
Truckee Donner			
Ukiah			
Plumas-Sierra			

BOB LINGL CHAIR ATTEST: CARY A. PADGETT ASSISTANT SECRETARY

Steam Field Operations Forecast Report – April 2017

NCPA Generation Services – Geothermal Facilities

Steam Field Operations and Forecast Report

April 2017

Table of Contents

INTRODUCTION							
ί ετελμετεί ο αθεθλήμανε	2						
I. STEAM FIELD OFERATIONS							
A. Overview Of 2016 Production and Injection	2						
B. Geothermal Operating Plan	3						
C. Water Injection Program	4						
D. Geothermal Facility Projects	7						
II. 2016 RESERVOIR PERFORMANCE & 2017 GENERATION FORECAST	9						
A. Reservoir Pressure Distribution	9						
B. Reservoir Pressure and Flowrate Decline	9						
C. 2016 Generation Review	10						
D. 2017 Generation Forecast	10						
SUMMARY	11						
List of Figures & Tables	and the second						
Figures 1-15	12-26						
Table 1 - Annual Report of NCPA Injection at The Geysers 2016	27						
Table 2 - Geothermal Facilities Summary	28						
Table 3 – Reservoir Pressure	29						
Table 4 – NCG Concentration	30						
Table 5 - 2017 Generation Forecast - 25 Years	31						
Table 5A - 2017 Average Generation Level – 25 Years	32						
Table 5B - 2017 Scheduled Outages – 25 Years	33						
Table 6 – 2017 Generation Forecast – 5 Years	34						
<u>Table 6A – 2017 Average Generation Level – 5 Years</u>	35						
Table 7 – 2017 Forecast of Geothermal Production and Injection	36						

NCPA Generation Services Business Unit Steam Field Operations and Forecast Report

April 2017

Introduction

This report provides an update on the status of the NCPA Geothermal Project. There are three main sections:

- I. A review of steam field operations including annual production and injection volumes, the Geothermal Operating Plan, water injection program, and projects.
- II. A review of 2016 reservoir performance and generation.
- III. A 2017 generation forecast.

Analysis of geothermal reservoir during 2016 indicates a continued 1.9% harmonic decline consistent with prior projections. The average generating capacity for 2016 was 101 MW gross or 93.3 MW net. Gross generation for the year was 887.3 GWhrs with net generation of 820.1 GWhrs.

Water injection continues to be a major contributor to maintaining reservoir pressure and mitigating steam production decline rates. The Southeast Geysers Effluent Pipeline project brings an average of 5,600 gpm of wastewater to The Geysers. NCPA and a nearby power producer share the water, but in late 2015, the Valley Fire damaged several of their power plants and their injection capability. As a result, NCPA received a larger share of the wastewater and water injection rates for the 2016 were up 42% from the previous year averaging 4,836 gpm.

The 2017 generation forecast projects the average generating levels to be 99.3 MW gross or 91.7 MW net for the year. NCPA geothermal facilities are expected to generate 862.2 GWhrs gross or 796.5 GWhrs net in 2017. The 25 year projected gross reserves are estimated to be 18,085 GWhrs or 16,163 GWhrs net.

In terms of the fiscal year, the gross generation is estimated to be 873.2 GWhrs with net generation of 810.9 GWhrs in FY 2017. The respective gross and net generation projected for FY 2018 is 867.8 GWhrs and 800.9 GWhrs.

I. STEAM FIELD OPERATIONS

In This Section

- Overview of Annual Production and Injection
- Geothermal Operating Plan
- Water Injection Program
- Steam field Projects

A. Overview of 2016 Production and Injection

NCPA continued to operate the Geothermal Project as a base load facility in 2016. Steam production for the year was 15.1 Glbs with water injection of 21.2 Glbs for an annual mass replacement ratio of 140%. Water injection on the NCPA lease is a combination of steam condensate recovered from the cooling towers and wastewater from the Southeast Geysers Effluent Pipeline (SEGEP). The water from the SEGEP pipeline is shared between NCPA and a nearby power producer. In late 2015, the Valley Fire damaged several of the nearby producer's power plants resulting in NCPA receiving a larger than normal share of the SEGEP wastewater. As a result, the average injection rate for NCPA increased 42% from the previous year to 4,836 gpm.

The cumulative mass replacement ratio from plant startup in 1983 through 2016 was 65.2% (*Figure 1*). The net mass withdrawal of steam from the reservoir (Mass Produced less Mass Injected) through 2016 is 223.2 billion lbs.

The average annual generation for 2016 was 101.3 MW gross or 93.5 MW net. The average generation is down from 2015 because of continued steam field decline and plant outages. In 2017, generation levels are projected to be 99.3 MW gross or 91.7 MW net.

Production Highlights during 2016 include:

- Annual average gross generation in 2016 was 101 MW or 93.3 MW net.
- Average annual mass replacement (i.e., the percentage of steam production replaced by water injection) was 140% in 2016 compared to 96.1% for 2015. The 2016 average injection rate was 4,836 gpm and was a 42% increase over the previous year. The increase was due to receiving higher than normal amounts of SEGEP wastewater.
- In 2017, the average generation is projected to be 99.3 MW gross or 91.7 MW net.

B. Geothermal Operating Plan

The Geothermal Project Operating Agreement requires the NCPA Commission to establish an Operating Plan and an annual operating level for the Geothermal Units. The purpose of the plan is to maximize the efficient use of the geothermal resource, protect the power plants and equipment, and meet all regulatory and permitting requirements.

A Geothermal Operating Plan, effective July 1, 2016, was approved and recommended by the Coordinated Operating Group (COG), the Generation Services Business Unit, and the NCPA Commission during the May 26, 2016 meeting. The Plan establishes an Operating Protocol that maintains a Two Zone operation within the NCPA lease. The Two Zone Operation was implemented to improve operational response time during a unit trip at Plant #1 and maximize generation on the NCPA lease while minimizing reservoir communication with nearby competitor operations.

Under the current Protocol, steam production from the west side of the lease, Zone 1, is directed to Units #1 and #2 at Plant #1. Steam production from the east side of the lease, Zone 2, is directed to Plant #2, Unit #4 (*Figure 5*). Combining zones is periodically tested to determine if the overall generation from both plants can be increased, but has generally resulted in a net loss of generation. The current Protocol effectively utilizes steam production, improves performance at the plants, and complies with existing permits and regulations.

While the Protocol maximizes generation, it does allow for scheduling flexibility and reduction of load under the proper economic conditions. Sustained curtailments of Plants #1 and #2 are possible, but not recommended because recovery of the curtailed generation would take an extended number of years.

C. Water Injection Program

NCPA continues to operate the steam field in the manner intended to maximize the recovery of injected water. In order to maximize recovery, it is important to have sufficient water and distribute it over the widest possible area of the field. It is also necessary to inject water at the lowest possible rate to maximize the heat transfer between the reservoir rock and water. Other factors that weigh into water injection strategy are targeting hotter zones of the field and higher gas concentrations within the reservoir. The water injection program discusses NCPA's supplemental water source, the Southeast Geysers Effluent Pipeline (SEGEP), current injection operations, micro-earthquake activity and non-condensible gas trends as a result of the injection.

1. Southeast Geysers Effluent Pipeline (SEGEP)

The Southeast Geysers Effluent Pipeline (SEGEP) project is a pipeline bringing water to The Geysers for the purpose of supplementing water injection in the field. During normal years, NCPA receives an average 2,700 gpm out of 5,600 gpm water that is delivered. Injection of this water into The Geysers reservoir helps mitigate reservoir pressure declines and increases steam reserves. *Figure 6* shows the historical SEGEP deliveries for NCPA and the total for the project.

SEGEP deliveries were at normal levels until the Valley Fire occurred in September 2015. The fire damaged several geothermal power plants that are operated by a nearby independent power producer and they were not able to take their allotted share of wastewater for several months. NCPA had a 30% higher than normal water injection from the SEGEP pipeline as a result. NCPA average flow rate from SEGEP was 3,709 gpm in 2016 versus 2,859 gpm in 2015.

2. Injection Operations

There were 11 different wells used for injection in 2016. The injection strategy continues to be an effort to spread water over large geographic area and limit injection rates down individual wells as much as possible.

Figure 7 shows the relative location of the 11 injection wells on the NCPA lease. Six of these wells, B-6, E-8, H-4, Q-1, Q-4, and Q-10 were only connected to the SEGEP pipeline and therefore received only effluent or wastewater. One well, J-6, is a dedicated condensate injection well receiving water from Plant #2. The remaining four wells received a combination of condensate and wastewater. *Figure 8* and *Table 1* show the relative amounts and type of water each well received in 2016.

3. Micro-earthquake Activity

Studies by the United States Geological Survey (USGS) and others have demonstrated that the steam production and water injection at The Geysers can cause frequent micro seismic events to occur. As a result, NCPA and the other operators are required to continuously monitor and report on the earthquakes that occur within The Geysers geothermal field. *Figure 9* is a map showing the locations of the 804 seismic events of magnitude 1.5 and larger that occurred within The Geysers field during 2016. Fourteen of these events had an earthquake magnitude of 3.0 or greater. The largest seismic event was a magnitude 5.01 on a competitor lease.

On the NCPA lease, there were 64 events of M=1.5 or greater. The largest event was a magnitude of 3.37 and occurred near NCPA's southern lease line. The figure below shows the historical seismic activity for the NCPA lease from 2000 through 2016. The seismic activity for 2016 was higher than the activity in 2015.

4. Non-condensible Gas (NCG) Trends

Non-Condensible Gas (NCG) is a natural product of the reservoir and may be present in varying concentrations within the steam that is produced at The Geysers. NCG production reduces plant efficiency and increases chemical treatment costs. The values vary significantly based on operating guidelines for the field, plant outages, or injection strategy. Water injection in areas of high gas concentration generally reduces NCG production and improves plant efficiency.

Table 4 shows an annual sampling of all the producing wells in the field and the analysis for NCG's. These values can vary somewhat based on daily operational changes and the adjustment of injection strategies within the field, but are considered to be typical concentrations of NCG's for these wells. In spite of increased injection for the year, NCG concentrations were slightly up from the previous year. Figure 10 shows a comparison of the relative changes throughout the field.

D. Geothermal Facility Projects

Major projects completed in 2016 were:

- Sedimentation Basin Repair The concrete on the Sedimentation Basin needed to be repaired and re-coated to prevent possible structural damage. The project was completed on July 25, 2016 at a cost of \$160,122.
- Knockout Pot Repair Heat loss in the steam production pipelines causes some steam condensate or water to form in the lines. The water is collected by knockout pots for reinjection back into the reservoir. A significant number of knockout pots were not functioning due to debris and needed to be repaired. Repairs or modifications were made to 33 knockout pots. The project was completed on April 29, 2016 and cost \$132,252.

In 2017, major projects that have been completed or will be initiated are:

- Plant #1 Yard Repair A large 40 ft x 100 ft concrete pad was constructed in the Plant #1 yard to prevent asphalt damage from continued storage of phase separators and sulfur bins. In addition, a gas cylinder storage shed was constructed and repairs to existing asphalt in the plant yard were done. The project was completed on March 10, 2017 at a cost of \$206,865.
- Unit #4 Main Steam Pipeline A new Unit #4 main steam pipeline was constructed for the purposes of reducing pressure losses and improving in generation. The pipeline was put into service on March 30, 2017 and the unit saw the expected 1 MW gain in generation. The project cost was the budgeted amount of \$950,000. With this project cost and generation benefit, the economics show a three-year payback on investment with an IRR of 38.5% achieved over a fifteen year life.
- Plant #2 Fire Line Replacement The Plant #2 fire line has been contracted out with an expected project cost of \$571,000. Replacement of the Plant #2 fire line should start in May 2017.

In This Section

- Reservoir Pressure Distribution
- Reservoir Pressure and Flowrate Decline
- ▶ 2016 Generation Review
- 2017 Generation Forecast

Reservoir performance can be affected by a number of factors such as changes in the location or amount of water injected, the operating pressure of the field, gain or loss of production wells, or changes in the operation of nearby competitor leases. The effects of these changes on the reservoir are normally monitored by conducting pressure build-up tests on production wells, tracer tests on injection wells, and a continuous review of pressure, temperature, and flowrate data from the field. This section will discuss recent changes in reservoir pressure distribution, reservoir pressure decline, and steam field flowrate decline.

A. Reservoir Pressure Distribution

One of the most important parameters in predicting and explaining reservoir performance is static reservoir pressure. *Figure 11* shows areal pressure distributions of static reservoir pressures for April 2016 and April 2017. In general, wells on the west side of the field have the lowest reservoir pressures (< 80 psig) and the east side of the field continues to be the higher pressure area.

B. Reservoir Pressure and Flowrate Decline

Changes in reservoir pressure over time are a function of the mass-replacement ratio. By injecting steam condensate and supplementing it with run-off fresh water and secondary treated wastewater from the Southeast Geysers Project, the decline in reservoir pressures has moderated or slowed with time.

In 2016, 52 wells were shut-in at various times to conduct pressure build-up tests. The tests revealed that the average wellhead shut-in pressure was 72 psig or an average decrease in wellhead pressure of 12.3 psig. This may be attributed to increased injection from 2015. The average well on the NCPA lease flows 27,000 lb/hr at 39.5 psig.

The projected flowrate decline is shown in *Figure 13*. In 2016, the overall steam field flow rate averaged 1,773 klbs/hr. This flow rate is projected to be 1,741 klbs/hr in 2017. The projected overall steam field decline is a harmonic 1.9%. Continued and strategic injection of water over a wide area of the reservoir is expected to enhance recovery and provide better reservoir pressure support in future years.

C. 2016 Generation Review

Gross generation for the NCPA Geo Facilities in 2016 was 887.3 GWhr with net generation of 820.1 GWhr. For FY 2017, gross generation is estimated to be 873.2 GWhrs with net generation of 810.9 GWhrs. The 2016 gross generation capacity was an average of 101 MW while net generation capacity averaged 93.3 MW.

D. 2017 Generation Forecast

The updated forecast of future reservoir performance, and the resulting energy generation forecast for the NCPA geothermal plants, was developed using decline curve analysis in conjunction with a review of the 2015 computerized reservoir model projection. Included in the forecast are:

- 1. Operation of the steam field in a two-zone operation.
- 2. Installation of new turbines in Units #1 and #2 in the spring and fall of 2013.
- 3. The continued benefits being derived from the Southeast Geysers Effluent Pipeline Project.

The most recently developed forecast of steam field operations is illustrated in *Figure 12*. This graph shows NCPA's 34 year historical data for both steam production and water injection, and forecasts of production and injection out to year 2041. With the startup of the Effluent Pipeline in September 1997, and with its continuous operation projected thereafter, the average annual mass replacement is close to 100%. Water injection should continually exceed production in the future and a gradual decline in the level of steam production will approach a near-sustainable level of 80% of the mass of water injected.

The total amount of steam capable of being produced by NCPA through year 2041 is currently estimated at 305.9 billion pounds. Remaining gross generation reserves are estimated to be 18,085 GWhr with net reserves of 16,163 GWhr. *Figures 14* and *15* respectively show the projected net generation capacity and total net generation amount for 2017 through 2041. *Table 4* details the annual gross and net generation. A more detailed monthly five year forecast can be found in *Table 5*.

In 2017, it is estimated that the Geo Facilities will generate 862.2 GWhrs gross or 796.5 GWhrs net. Respective gross and net generation capacity levels for the year are projected to be 99.3 MW gross and 91.7 MW net. For, FY 2017, the respective gross and net generation amounts are projected to be 873.2 GWhrs and 810.9 GWhrs.

<u>SUMMARY</u>

Steam Field Operations

- The NCPA lease produced 15.1 Glbs steam while injecting 21.2 Glbs of water resulting in an average mass replacement of 140% for the year.
- The average gross generation capacity for 2016 was 101 MW gross while the net generation capacity was 93.3 MW net.
- The average water injection increased from 3,398 in 2015 to 4,836 gpm in 2016. The Valley Fire in late 2015 damaged several power plants of a nearby power producer and as a result, NCPA received a larger share of the available wastewater.
- Water recovery as Injection-Derived-Steam needs to be maintained to continue to benefit from the SEGEP Pipeline. The injection strategy going forward is to inject available water supplies over a greater area with the intent of maximizing its recovery over a shorter time period.

2016 Reservoir Performance Review

- There was a decrease in reservoir pressures mainly at the Q-site well pad due to increased injection. Injection in this area has been reduced to allow the wells to thermally recover.
- Average shut-in wellhead pressure for the NCPA lease was 72.1 psig. The average well produces 27 kph at 39.5 psig.
- The steam field deliverability was 1,773 klbs/hr in 2016. The projected 2017 deliverability is 1,741 klbs/hr. The projected harmonic decline rate going forward is 1.9%.

2016 Generation Review and 2017 Generation Forecast

- Gross generation for 2016 was 887.3 GWhrs with net generation of 820.1 GWhrs. For FY 2017, gross generation is estimated to be 873.2 GWhrs with net generation of 810.9 GWhrs.
- The generation forecast covers the period from 2017-2041. Recoverable steam reserves are estimated at 305.9 billion pounds with the total amount of remaining gross generation estimated at 18,085 GWhr or net generation of 16,163 GWhr.
- The gross generation capacity for 2017 is projected to be 99.3 MW or 91.7 MW net. Gross generation for the year is projected to be 862.2 GWhrs or 796.5 GWhr net. For FY 2017, the respective gross and net generation amounts are projected to be 873.2 GWhrs and 810.9 GWhrs.

Historical Production & Injection Figures, 3-17-17.xls

Figure 3. Historical Power Generation Levels NCPA Geo Facilities

*Generation levels include downtime for unit outages and overhauls

Figure 5. GEOTHERMAL OPERATIONAL PLAN 2017

FIGURE 10 NONCONDENSABLE GAS CONCENTRATIONS IN NCPA STEAM (ppm)

FIGURE 11 NCPA STEAM FIELD RESERVOIR PRESSURE

2016 Injection

Table 1. ANNUAL REPORT OF NCPA INJECTION AT THE GEYSERS STEAM FIELD																
						for Yea	ar 2016 (ir	1000 Ga	lons)							W
~		Ian-16	Fab-16	Mar.16	Apr-16	May-16	lun-16	.lut-16	Aug. 16	Sec-16	Oct-16	Nov-16	Dec-16	Condensate ⁽¹⁾	Effluent ⁽²⁾	Total
Well		541-10	100-10	10122 - 10	Api-10	may-10	5411-10		Aug 10	000 10		110-10				
A_1	Condensate	30.822	13 776	27 118	12 358	15 611	13 118	9.822		2 610	19 975	20.675	24 516	190 401		236.072
/~-1	Effluent	1,229	6,520	2,337	6,291	4,748	7,569	2,096		2,980	6,917	3,120	1,864	100,401	45,671	200,012
P.F	Effluent												18		18	18
<u>D-0</u>	Cilicent			-												<u>_``</u>
C-5	Effluent		<u> </u>							-				}		
C-11	Condensate			-				-	-	-				~		
L	Effluent	-		-						-					-	
E-8	Effluent	29,390	12,902	29,859	19,812	17,858	23,644	21,731	20,161	25,705	24,405	27,785	24,527		277,779	277,779
F-1	Condensate	-			-	-	-	-	-	-		-	•	-		-
	Effluent		,	-			*				-				<u> </u>	
F-4	Condensate	35,464	21,644	33,448	19,529	25,482	15,714	5,345	20,809	24,110	24,824	30,654	32,287	289,310		371,285
	Effluent	1,823	8,128	2,855	10,243	7,578	8,889	5,763	9,975	11,003	8,236	4,660	2,822		81,975	
H-1	Effluont	-	-	1,259	16,598	33,345	34,705	28,957	-		-	-	-		114,864	114864
H-4	Effluent	31 533	28 350	28 106	23 631	24 881	30,280	32 314	25 248	30 168	29 804	30 035	28 882		343 232	343 232
	L.IIIde II	0.,000				21,007			20,2.0							10/0
J-6	Condensate	60		19		193			937		79	-	61	1,349		1,349
N-4	Condensate	-	÷	-	-	-	-		-	-		-	<u> </u>	-		
L	Effluent	-	*	-		<u> </u>	-		-	-	······			<u></u>		
N-7	Condensate	21,500	7,930	14,487	235	3,184	624	10,998	4,340	6,591	13,379	11,985	17,647	112,901		502,612
	Effluent	38,198	34,413	38,564	25,653	23,283	30,902	29,489	30,342	36,393	38,136	30,492	33,847		389,711	
P-1	Effluent	-	-	-	-	-	-	-	-	-	-	-	-		-	-
P-9	Effluent			-			-		-			-			-	-
0.1	Effluent	2 772	7 274	14 022	16.055	16 609	16 241	16 500	12 326	17 271	17 530	19 593	16.076		172 360	172 369
		2,773	1,514	14,500	10,000	10,000	10,241	10,535	12,020	17,271	17,000	10,000	10,070	<u> </u>	172,303	112,005
Q-3	Effluent		-	-		-	-	-	-		-				-	-
0.4	Effluent	19.466	5 966	19 359	18 312	18 943	19.482	21 225	14 101	19 450	18 542	20 791	17 934		213 571	213 571
		,0,700	0,000	10,000		.0,0-10	10,104			10,100		20,.01			210,071	
Q-7	Effluent						-		-	-	-	-	-			-
Q-10	Condensate	-		-			-		-	-	-			0		315.837
	Effluent	34,044	27,836	26,638	19,575	19,164	27,165	27,584	20,698	24,912	31,707	22,834	33,680		315,837	
	C (2)															
-1-5	Enluent			-			· · · · · · · · · · · · · · · · · · ·									
								[Condensate(1)	Effluent(2)	Total
Totals		246,302	174,839	238,982	188,292	210,878	228,333	211,923	158,937	201,193	233,534	221,614	234,161	593,962	1,955,026	2,548,988
		During eacl	h month the	% of Effluer	t Pipeline wa	ater that was	s fresh wate	withdrawn	from Clear L	ake:	52%					
Į	l		ļ					L	ļ		ļ					
Notes:	1. "Effluent" (p	ipeline) volume	s are water	from Clear I	ake togethe	r with LACC	SAN and C	earlake Oak	s treated wa	astewater.	<u> </u>	<u> </u>				
	2. The 9 Bold well names in <i>Italics</i> are located in Lake County (Central Valley Region), the 10 others are in Sonoma County (North Coast Region).															

TABLE 2. GEOTHERMAL FACILITIES Summary Table

		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
	Generation (gross)										
	(MWh)	1,055,813	1,018,904	981,100	916,437	926,368	936,868	886,004	922,995	903,299	887,299
	(MW)	120.5	116.0	112.0	104.6	105.7	106.7	101.1	105.4	103.1	101.0
	<u>Generation (net)</u>									007 070	010 110
	(MVVh)	9/4,38/	942,153	900,599	844,642	858,747	8/2,422	816,824	862,842	05.6	019,149
	(MIAA)	111.2	107.3	102.0	90.4	90.0	99.0	93.2	90.0	95.0	
<u> </u>	Protocol		_ <u></u>						···		
	(MW)	122	116	113	108	108	108	108	107	107	107
	(
	Steam Conversion			-	1 1			1			
\square	(Lbs / Kw)	16.66	16.83	17.53	18.33	18.39	17.72	18.99	17.33	17.20	17.00
	Steam Delivered										
	(Billion Lbs)	17.59	17.145	17.2	16.8	17.04	16.60	16.83	16.00	15.54	15.08
	Load Flexibility (gross)				100	100		100			100 70
		120	121	117	109	109	105	109	104	104	103.70
	MONTHLY LOW (MAN)	100	101	100	63	100	105	02	104	104	103.00
$\left - \right $	Injection			- <u> </u>		- <u> </u>	_ <u>_</u>		- 		
⊢	Total (Billion Lbs)	20.94	16.00	14,74	17.45	16.66	16,22	17.96	12.39	14.86	21.21
F	Condensate (Billion Lbs)	6.23	4.87	2.87	4.96	4.79	5.00	4.21	4.62	4.20	4.94
	Effluent (Billion Lbs)	14.47	10.83	9.82	12.13	11.82	11.18	13.75	7.77	12.50	16.27
							i i				
	Mass Replacement										
	Annual (%)	119.0%	93.3%	85.7%	103.9%	97.8%	97.7%	106.7%	77.5%	95.6%	140.6%
	Cumulative (%)	55.2%	56.2%	57.2%	58.6%	59.8%	60.9%	62.2%	62.6%	63.4%	65.2%
											
	Wells Used For Injection										
		7	8	8		15	15	13	12	13	
<u> </u>			_ _								
<u> </u>	NCPA Micro-seismic					<u> </u>					
	Activity M> = 1.5	76	50	49	55	73	81	68	58	50	64
<u> </u>	NCPA Micro-seismic							- {			
<u> </u>	Activity Maximum			2.64				276	1 20	2.00	
<u> </u>	Magnitude Event	2.91	2.9/	2.04	<u> </u>	5.3		3.70	4.30	2.99	
<u> </u>	Magintuge Lvent										
	······										
	NCG Concentration	2,482	2,209	2,395	2,785	2,950	3,097	3,248	3,069	3,176	3,376
	(ppmw)										

Table 3 RESERVOIR PRESSURE BY WELL 2017

WELL	PRESS		WELL	PRESS		WELL	PRESS	WÈLL	PRESS
]	migan ang panta ang kabang kanang kabang kanang kabang kabang kabang kabang kabang kabang kabang kabang kabang			
A-3	69.3		D-1	56.9]			P-1	
A-4	69.3		D-2	76.5		H-1	63.8	P-2	119.0
A-5	67.9		D-6	72.2		Н-2	78.7	P-4	152.7
A-6	66.4		D-7	64.6]	H-3	63.7	P-5	
A-SITE	68.2		D-8			H-4		P-6	
			D-SITE	67.5		H-5	58.9	P-7	91.1
B-2	79.9					H-SITE	66.3	P-8	152.9
B-3	78.6		E-1	74.5				P-9	
B-4	75.5		E-2	77.8		J-2	79.7	P-SITE	128.9
B-5	72.8		E-3	88.4		J-3	93.5		
B-6			E-4	74.5		J-4	102.3	Q-1	
B-SITE	76.7		E-5	77.7		J-5	133.6	Q-3	42.2
			E-6			J-SITE	102.3	Q-4	
C-1	56.3		E-8					Q-5	
C-2	53.5		E-SITE	78.6				Q-6	
C-4	57.4					N-1	58.7	Q-7	44.3
C-5	53.0		F-1	55.6		N-2		Q-8	
C-6	53.4		F-2	61.8		N-3	64.0	Q-9	
C-7	51.3		F-3	68.0		N-4	56.8	Q-SITE	43.2
C-8	56.2		F-4			N-5			
C-9	55.7		F-5	68.4		N-6	_	Y-1	64.8
C-10	40.6		F-6	65.5		N-SITE	59.8	Y-2	61.5
C-SITE	53.0		F-7	63.3				Y-3	65.1
			F-SITE	63.8				Y-4	
								Y-5	
								Y-SITE	63.8
		L							

VALUES ARE FROM PRÉSSURE BUILD- UP TESTS SHADED NUMBERS ARE FOR DATA OBTAINED FROM OTHER STATIC PRESSURE OBSERVATIONS

52 WELLS TESTED	AVE. WELL PRESS EQUALS	72.1 psig	
	AVE SITE PRESS EQUALS		72.7 psig
	AVE. FLOWRATE =	27 kph at	39.5 psig

	TABLE 4 NCG CONCENTRATIONS (PPMW) 2016 BY WELL, AND SITE AND PROJECT									
WELL	NCG	WELL	NCG	WELL	NCG	WELL	NCG			
A-3	9843	D-1	3030	H-1	1599	P-1				
A-4	2301	D-2	2706	H-2	1487	- p_2	2720			
A-5	1085	D-6	3043	H-3	4248		1486			
A-6	3593	D-7	2679	H-4		- P-5	1202			
A-SITE	4206	D-8	972	Н-5	3077	P-6	2285			
	2007/07/07/07/07/07/07/07/07/07/07/07/07/	D-SITE	1805	H-SITE	2603	P-7	3174			
B-2	2768			l		P-8	3095			
B-3	4441	E-1	10164	J-2	3443	P-9				
B-4	2971	E-2	3586	J-3	1042	P-SITE	2327			
B-5	2273	E-3	3329	J-4	2610		dalenen kan barakan kenala kan dalam kenala ken			
B-6		E-4	4745	J-5	930	Q-1				
B-SITE	3113	E-5	5503	J-SITE	2006	Q-3	5323			
	anna an taona ann an taona an taona an taona an taona an taona	E-6	3117			Q-4				
C-1	2948	E-SITE	5074	N-1	2139	Q-5	2571			
C-2	3844		and a substantion of the	N-2	1490	Q-6	2374			
C-4	3814	F-1	1054	N-3	773	Q-7	9559			
C-5	12325	F-2	4306	N-4	843	Q-8	3192			
C-6	5771	F-3	2084	N-5	3935	Q-9	2398			
C-7	3393	F-4	415	N-6	3977	Q-A				
C-8	6036	F-5	415	N-SITE	2193	Q-SITE	4236			
0-9	7098	F-6	1000			57.1	0027			
C SITE	2300	F-/ FSITE	1777	2 2 2		Y-1 V-2	2237			
C-511E	3404	P-SILE	1/34			1-2 V 2	3328			
						1-5 V 4	4394			
						V-5	4483			
						V-SITE	3447			
						1-51115				
		VALUES A	RE FROM	I NCPA CHEN	M LAB ANALYS	IS				
		Number of v	wells samp	les wells samp	led=	65				
		AVG. WEL	L NCG =			3376				
		AVG. SITE	NCG =			3170				
		NCG Flow	Weighted A	Avg. =		3091				

2017 Generation - 25 Year Forecast Table 5

	Total Geo	Facilities	Plar	it #1	Plant #2		
	Gross	Net	Gross	Net	Gross	Net	
	Generation	Generation	Generation	Generation	Generation	Generation	
Year	GWHr	GWHr	GWHr	GWHr	GWHr	GWHr	
2017	862.2	796.5	492.4	448.5	369.8	348.1	
2018	859.7	792.8	487.9	443.4	371.8	349.4	
2019	852.4	739.8	489.3	399.1	363.0	340.6	
2020	827.8	757.1	480.0	431.3	347.8	325.8	
2021	818.9	748.0	472.2	423.7	346.7	324.3	
2022	764.6	695.3	466.0	417.4	298.6	277.9	
2023	795.5	720.7	463.8	411.3	331.8	309.4	
2024	784.7	709.7	459.0	406.5	325.7	303.2	
2025	759.2	654.3	448.1	365.2	311.0	289.1	
2026	754.1	683.1	442.5	393.9	311.7	289.3	
2027	742.4	671.4	436.9	388.3	305.5	283.1	
2028	700.9	627.9	436.3	384.0	264.6	243.9	
2029	723.6	649.1	429.8	377.6	293.8	271.4	
2030	703.0	632.5	421.0	372.4	282.0	260.1	
2031	699.0	596.4	416.0	335.8	283.0	260.6	
2032	690.9	619.7	412.1	363.4	278.7	256.2	
2033	682.6	608.2	409.6	357.6	273.0	250.6	
2034	641.1	568.5	404.8	352.9	236.3	215.6	
2035	662.7	591.5	396.8	348.2	265.9	243.3	
2036	653.3	582.1	393.3	344.6	260.0	237.5	
2037	642.8	542.6	387.8	310.0	255.0	232.6	
2038	637.5	563.3	386.7	334.9	250.8	228.4	
2039	629.2	555.0	382.4	330.6	246.8	224.4	
2040	585.2	516.7	375.0	326.4	210.2	190.3	
2041	611.8	540.6	371.9	323.2	239.8	217.3	

Notes:

- 1. Assumes 3 unit operation.
- 2. Steam Reserves: 305.9 Billion lb.
- 3. Gross Reserves: 18,085 GWhr
- 4. Net Reserves: 16,163 GWhr
- 5. Plant #1 Auxiliary Load is fixed at 5.68 MW. Plant #2 Auxiliary Load is fixed at 2.58 MW.
- 6. Plant availability is 99.5% or a forced outage rate of 43.8 hrs per year.
- 7. See Table 5B for scheduled outages.

2017 Generation Level - 25 Year Forecast Table 5A

	Plant	t #1	Plan	t #2	Total		
	Avg. Gross	Avg. Net	Avg. Gross	Avg. Net	Avg. Gross	Avg. Net	
	Gen.	Gen.	Gen.	Gen.	Gen.	Gen.	
Year	MW	MW	MW	MW	MW	MW	
2017	56.9	51.8	42.4	39.9	99.3	91.7	
2018	56.9	51.3	43.0	40.4	99.9	91.7	
2019	56.1	46.3	42.0	39.4	98.1	85.7	
2020	55.4	49.8	41.0	38.4	96.4	88.2	
2021	54.6	49.0	40.1	37.5	94.7	86.5	
2022	53.9	48.3	34.3	31.9	88.2	80.2	
2023	53.2	47.6	38.4	35.8	91.6	83.4	
2024	52.5	46.9	37.6	35.0	90.1	81.9	
2025	51.8	42.4	36.8	34.2	88.6	76.6	
2026	51.2	45.6	36.1	33.5	87.2	79.0	
2027	50.5	44.9	35.3	32.8	85.9	77.7	
2028	49.9	44.3	30.3	27.9	80.2	72.2	
2029	49.3	43.7	34.0	31.4	83.3	75.1	
2030	48.7	43.1	33.4	30.8	82.1	73.9	
2031	48.1	38.9	32.7	30.2	80.9	69.1	
2032	47.5	41.9	32.2	29.6	79.7	71.5	
2033	47.0	41.4	31.6	29.0	78.6	70.4	
2034	46.4	40.8	27.1	24.8	73.6	65.6	
2035	45.9	40.3	30.5	27.9	76.4	68.2	
2036	45.4	39.8	30.0	27.4	75.4	67.2	
2037	44.9	36.0	29.5	26.9	74.4	62.9	
2038	44.4	38.7	29.0	26.4	73.4	65.2	
2039	43.9	38.2	28.6	26.0	72.4	64.2	
2040	43.4	37.8	24.6	22.2	68.0	60.0	
2041	42.9	37.3	27.7	25.1	70.6	62.4	

* Average generation levels plants including down time for outages and overhauls.

2017	Scheduled	Outages -	25	Year	Forecast
		Table 5B			

	Plar	Plant #2		
	Unit 1 Unit 2		Unit 4	
	Scheduled	Scheduled	Scheduled	
	Outages	Outages	Outages	
Year	hrs	hrs	hrs	
2017	72	72	300	
2018	72	72	72	
2019	672	672	72	
2020	72	72	72	
2021	72	72	72	
2022	72	72	1008	
2023	72	72	72	
2024	72	72	72	
2025	672	672	72	
2026	72	72	72	
2027	72	72	72	
2028	72	72	1008	
2029	72	72	72	
2030	72	72	72	
2031	672	672	72	
2032	72	72	72	
2033	72	72	72	
2034	72	72	1008	
2035	72	72	72	
2036	72	72	72	
2037	672	672	72	
2038	72	72	72	
2039	72	72	72	
2040	72	72	1008	
2041	72	72	72	

2017 Generation - 5 Year Forecast Table 6

	Total Geo	Facilities	Plant #1		Plant #2	
	Gross	Net	Gross	Net	Gross	Net
	Generation	Generation	Generation	Generation	Generation	Generation
Date	GWHr	GWHr	GWHr	GWHr	GWHr	GWHr
Jan-17	75.2	70.6	42.3	39.6	32.9	31.0
Feb-17	64.4	60.5	35.1	32.9	29.3	27.7
Mar-17	59.8	56.2	40.8	38.3	19.0	17.9
Apr-17	69.0	63.6	37.3	33.7	31.7	29.9
May-17	75.5	69.5	42.8	38.6	32.7	30.8
Jun-17	73.0	67.1	41.4	37.3	31.6	29.8
Jul-17	75.3	69.2	42.7	38.5	32.6	30.7
Aug-17	75.2	69.1	42.7	38.5	32.5	30.6
Sep-17	72.6	66.8	41.2	37.2	31.4	29.6
Oct-17	74.9	68.9	42.6	38.4	32.4	30.5
Nov-17	72.4	66.5	41.1	37.1	31.3	29.4
Dec-17	74.7	68.6	42.5	38.3	32.3	30.3
Jan-18	74.6	68.5	42.4	38.2	32.2	30.3
Feb-18	67.3	61.8	38.3	34.5	29.0	27.3
Mar-18	71.3	65.4	42.3	38.1	29.0	27.2
Apr-18	63.7	62.3	32.7	33.2	31.0	29.1
May-18	74.1	68.1	42.2	38.1	31.9	30.0
Jun-18	71.6	65.8	40.8	30.8	30.8	29.0
Jul-18	73.9	67.8	42.1	38.0	31.8	29.9
Aug-18	73.8	b7.7	42.1	37.9	31.7	29.0
Sep-18	71.3	65.4	40.7	30.0	30.7	20.0
UCI-18	73.6	67.5	42.0	37.8	31.5	29.7
NOV-18	71.1	65.2	40.0	30.0	30.5	20.7
Dec-18	73.4	67.3	41.9	37.7	31.5	29.6
Jan-19	73.2	67.2	41.8	37.7	31.4	29.5
Feb-19	66.1	60.6	37.7	34.0	28.3	26.6
Mar-19	70.0	26.5	41.7	0.0	28.3	26.5
Apr-19	70.6	61.1	40.3	32.7	30.2	28.4
May-19	72.8	66.8	41.6	37.5	31.2	29.3
Jun-19	70.4	64.5	40.2	30.2	30.1	28.3
Jul-19	72.6	55.5	41.5	37.4	31.1	29.1
Aug-19	72.0	00.4	41.0	37.3 201	31.0	29.1
Oct 10	70.0	04.Z	40.1	27.2	29.9	20.1
Nov 10	72.3	00.Z	41.4	36.0	20.9	29.0
Dec 10	72 1	0.40 66.0	40.0	37.1	20.0	28.8
lan-20	72.1	65.0	41.0	37.1	30.7	28.8
5an-20 Feb.20	67.2	61.5	38.5	34.7	28.7	26.9
Mar-20	71 7	65.7	41.2	37.0	30.6	28.7
Apr-20	54.5	49.7	35.8	32.2	18.7	17.5
May-20	71.5	65.4	41.1	36.9	30.5	28.5
Jun-20	69.1	63.2	39.7	35.7	29,4	27.6
Jul-20	71.3	65.2	41.0	36.8	30.3	28.4
Aug-20	71.2	65.1	40.9	36.8	30.3	28.4
Sep-20	68.8	62.9	39.6	35.5	29.3	27.4
Oct-20	71.0	64.9	40.8	36.7	30.2	28.3
Nov-20	68.6	62.7	39.5	35.4	29.1	27.3
Dec-20	70.8	64.7	40.7	36.6	30.1	28.1
Jan-21	70.7	64.6	40.7	36.5	30.0	28.1
Feb-21	63.8	58.3	36.7	33.0	27.0	25.3
Mar-21	67.6	61.7	40.6	36.4	27.0	25.3
Apr-21	64.2	58.7	35.3	31.7	28.9	27.0
May-21	70.3	64.2	40.5	36.4	29.8	27,9
Jun-21	67.9	62.0	39.2	35.1	28.8	26.9
Jul-21	70.1	64.0	40.4	36.3	29.7	27.7
Aug-21	70.0	63.9	40.4	36.2	29.6	27.7
Sep-21	67.6	61.7	39.0	35.0	28.6	26.7
Oct-21	69.8	63.7	40.3	36.1	29.5	27.6
Nov-21	67.4	61.6	38.9	34.9	28.5	26.6

2017 Generation Level - 5 Year Forecast* Table 6A

	Plani	: #1	Plant #2		Total	
	Avg. Gross	Avg. Net	Avg. Gross	Avg. Net	Avg. Gross	Avg. Net
	Gen.	Gen.	Gen.	Gen.	Gen.	Gen.
Year	<u>MW</u>	NW			101.4	14144
Jan-17	56.9	53.2	44.3	41.7	101.1	94.9
rep-17 Mor 17	52.Z	48.9	43.7	941.2	90.9	90.1 75.5
Mar-17	04.0 57.0	52.2	20.0	24.0 17	102.2	01.0 Q/ D
Apt-17 May 17	57.9	52.3	44.3	41.7	102.2	03.8 03.8
lup 17	57.9	52.2	44.2	41.0	102.0	03.0
Jul-17	57.0	52.1	44.0	41.0	101.5	93.5
Aug-17	57.6	52.0	43.9	41.3	101.6	93.3
Sep-17	57.5	51.9	43.8	41.3	101.4	93.2
Oct-17	57.5	51.9	43.8	41.2	101.2	93.0
Nov-17	57.4	51.8	43.7	41.1	101.1	92.9
Dec-17	57.3	51.7	43.6	41.0	100.9	92.7
Jan-18	57.3	51.7	43.5	40.9	100.8	92.6
Feb-18	57.2	51.6	43.4	40.8	100.6	92.4
Mar-18	57.2	51.5	43.3	40.7	100.5	92.3
Арг-18	57.1	51.5	43.2	40.6	100.3	92.1
May-18	57.0	51.4	43.1	40.6	100.2	92.0
Jun-18	57.0	51.3	43.1	40.5	100.0	91.8
Jul-18	56.9	51.3	43.0	40.4	99.9	91.6
Aug-18	56.8	51.2	42.9	40.3	99.7	91.0
Sep-18	00.0 50.7	51.1 54.4	42.0	40.2	99,0	91.0
Nov 19	56.6	51.1	42.7	40.1	99.4	91.Z
NOV-10 Dec-18	56.6	50 0	42.0	40.0	99.2	90.9
Jan-19	56.5	50.0	42.5	39.9	98.9	90.7
Feb-19	56.4	50.8	42.4	39.8	98.8	90.6
Mar-19	56.4	0.0	42.3	39.7	98.7	39.7
Apr-19	56.3	50.7	42,2	39.6	98.5	90.3
May-19	56.2	50.6	42.1	39.5	98.4	90.1
Jun-19	56.2	50.5	42.0	39.5	98.2	90.0
Jul-19	56.1	50.5	42.0	39.4	98.1	89.9
Aug-19	56.0	50.4	41.9	39.3	97.9	89.7
Sep-19	56.0	50.4	41.8	39.2	97.8	89.6
Oct-19	55.9	50.3	41.7	39.1	97.6	09.4
NOV-19	55.0 55.0	50.2	41.0	39.0	97.5	09.J 80.1
Dec-19	55.0 55.7	50.2	41.0	38.0	97.3	89.1
Feb-20	55.7	50.1	41.0	38.8	97.0	88.8
Mar-20	55.6	50.0	41.3	38.7	96.9	88.7
Apr-20	55.5	49.9	41.2	38.6	96.8	88.6
May-20	55.5	49.8	41.2	38.6	96.6	88.4
Jun-20	55.4	49.8	41.1	38.5	96.5	88.3
Jul-20	55.3	49.7	41.0	38.4	96.3	88.1
Aug-20	55.3	49.7	40.9	38.3	96.2	88.0
Sep-20	55.2	49.6	40.8	38.2	96.1	87.8
Oct-20	55.2	49.5	40.8	38.2	95.9	87.7
Nov-20	55.1	49.5	40.7	38.1	95.8	87.6
Dec-20	55.0	49.4	40.6	38.0	95.6	87.4
Jan-21	55.0	49.3	40.5	37.9	95.5	87.3
Feb-21	54.9	49.3	40.4	37.9	95.4	87.1
Mar-21	54.9 54.9	49.2	40.4	37.8	95.2 05.4	07.0
Apr-21 May 24	54.0	49.2	40.3	37.6	95.1	86.7
.lun-91	54.7 57 7	-49,1 ⊿0∩	40.2 40.1	37.6	04.9	86.6
Jul-21	54.6	49.0 49.0	40.1	37.5	94.7	86.5
Aug-21	54.5	48.9	40.0	37.4	94.5	86.3
Sep-21	54.5	48.9	39.9	37.3	94.4	86.2
Oct-21	54.4	48.8	39.8	37.3	94.3	86.1
Nov-21	54.4	48.7	39.8	37.2	94.1	85.9
Dec-21	54.3	48.7	39.7	37.1	94.0	85.8

* Average generation levels plants are capable of achieving.

TABLE 72017 FORECAST OF GEOTHERMAL PRODUCTION ANDINJECTION

6		STEAM COND		WATER
TIME		PRÓD.	INJ	INJ
STEP	DATE	BLBS	BLBS	BLBS
1	2017	14.6	4.7	15.1
2	2018	14.4	4.6	15.0
3	2019	14.1	4.5	15.0
4	2020	13.9	4.4	14.9
5	2021	13.7	4.4	14.8
6	2022	13.5	4.3	14.7
7	2023	13.2	4.2	14.7
8	2024	13.0	4.2	14.6
9	2025	12.8	4.1	14.6
10	2026	12.6	4.0	14.5
11	2027	12.5	4.0	14.4
12	2028	12.3	3.9	14.4
13	2029	12.1	3.9	14.3
14	2030	11.9	3.8	14.3
15	2031	11.8	3.8	14.2
16	2032	11.6	3.7	14,2
17	2033	11.4	3.7	14.1
18	2034	11.3	3.6	14.1
19	2035	11.1	3.6	14.0
20	2036	11.0	3.5	14.0
21	2037	10.9	3.5	13.9
22	2038	10.7	3.4	13.9
23	2039	10.6	3.4	13.9
24	2040	10.5	3.3	13.8
25	2041	10.3	3.3	10.5

NOTES :

I. CUM. PRODUCTION AND INJECTION 1983-2016	641.9 418.7	Billion Lbs Steam Billion Lbs Water
2. TOTAL WATER IS CONDENSATE + EFFLUENT + LA	KE + PON	D
3. FUTURE STEAM PRODUCTION 2017-2041 =	305.9	Billion Lbs
4. FUTURE WATER INJECTION 2017-2041 =	355,9	Billion Lbs