GEO - FY 2017 Proposed Projects

$\mathbf{0}$ \& M Projects	Notes	$\mathbf{\$ 4 0 0 , 0 0 0}$
Plant, Yard and Road Repair Maintenance	M	250,000
Plant 1 Cooling Tower Structure Work	M/S	150,000
Capital Projects	Notes	
Vehicle Replacements	D	$\mathbf{\$ 2 , 1 7 5 , 0 0 0}$
Plant 1 HVAC	M	100,000
Access Platforms	D	$1,000,000$
Plant 1 Auxiliary Steam Pipeline Modification	D	150,000
Boom Truck	D	100,000
Unit 4 Main Steam Pipeline	D	175,000
		650,000
Capital Development Reserve Projects	$\mathbf{\$ 6 , 1 2 3 , 6 5 8}$	$\mathbf{I N}$ Account

Authority for Budget (AFB) Supporting Documentation
 Plant, Yard and Road Repair Maintenance
 Northern California Power Agency

Current Situation and Need

Roads at the GEO require hot asphalt patching and resealing. In FY 15\&16, much of the Plant 2 Yard was resurfaced, the main road from the entrance to Plants 1 and 2 were worked on and patching was done on the road to M site. The Easement road from Calpine onto the NCPA lease is maintained contractually by NCPA and Calpine reimburses 40% of the cost. An estimated $\$ 180,000$ of work is needed on that road of which $\$ 128,000$ will be the NCPA share. Fog Lines, Reflectors and berms need to be worked on in order to maintain the safe working conditions at the facility and the road to $\mathrm{F}, \mathrm{P}, \mathrm{Q}$ and H require attention.

Alternatives Evaluated

1. Work on the sections of Roads that require resealing, hot-patching and resurfacing.
2. Do nothing and allow the roads to deteriorate and spend additional money in the future to bring them back up to standards and safe to drive.

Alternative Selected

Invest in the roads now and do not let them deteriorate to the point that there is a safety issue and it costs more money in the future to bring them back up to standards.

Financial Analysis

This was considered a mandatory project to maintain the roads at the GEO in a safe operating condition. The cost for the repairs is estimated to be $\$ 250,000$.

Non-Financial Benefits

The Safety of the persons driving the roads at the GEO

Recommendation

Staff recommends the Road Repairs be undertaken in FY 2017.

Authority for Budget (AFB) Supporting Documentation
 Plant 1 Cooling Tower Structure Work
 Northern California Power Agency

Current Situation and Need

The Plant 1 Cooling Tower has been in mostly continuous service for over 30 years.
The Deck on the top of the tower where the employees occasionally have to do work is in need of major maintenance. For the continued safe operation of the Cooling tower, some railing work needs to be done, the CT Distribution boxes need to be replaced and the trays need an overlay. The majority of the work will take place one cell at a time and will have a minimal effect on generation.

The expected cost of all of the work is $\$ 150,000$.

Alternatives Evaluated

1. Do the work on the Cooling tower to enhance the safety of the structure.
2. Leave the Tower as is and repair it as it deteriorates.

Alternative Selected

Do the work on the Cooling tower to enhance the safety of the structure.

Financial Analysis

No financial analysis was done as this is a safety issue.

Non-Financial Benefits

The Safety of the persons walking on the Tower.

Recommendation

Staff recommends that $\$ 150,000$ be budgeted in FY 17 so that the existing Plant 1 Cooling Tower can be worked on.

Authority for Budget (AFB) Supporting Documentation
 Vehicle Replacements
 Northern California Power Agency

Current Situation and Need

There is a need to replace older vehicles at the geothermal facility as they become unreliable. The vehicle that is used by our Operations Manager has over 110,000 miles and is at the point where its reliability is becoming problematic. We would like to replace that vehicle and if so that truck would go into the operations fleet for Geysers use. Another, older (142,746 miles) operations fleet vehicle would be put out for auction following NCPA's procedures. Additionally, there is an older two wheel drive mechanic/welders truck that is currently being used that would be replaced with a 4WD F350. GEO staff believes that, based on the cost of repairs and the issues surrounding reliability, it would be more cost effective to purchase a new vehicle and put the old one up for sale than to continue spending money and time fixing them.

Alternatives Evaluated

1. Replace the older vehicles.
2. Continue to use the existing vehicles until they now longer can be repaired.

Alternative Selected

Replace the existing vehicle and put the older vehicle up for sale following NCPA's procedures.

Financial Analysis

This was considered a mandatory project to maintain a reliable vehicle fleet at the GEO. The cost for the vehicles is estimated to be $\$ 100,000$.

Non-Financial Benefits

The Safety of the persons driving the vehicle at the GEO.

Recommendation

Staff recommends that $\$ 100,000$ be budgeted in FY 17 so that new vehicles can be purchased.

Authority for Budget (AFB) Supporting Documentation Plant 1 HVAC Northern California Power Agency

Current Situation and Need

NCPA Plant 1 HVAC system provides cooling for the Motor Control Centers of the facility. When the system is not working properly, the doors to those rooms have to be left open with large fans in service to keep the equipment from overheating. With the doors open and fans going, the equipment can be run, but it is exposing it to some corrosive gasses including H2S. The combination of the high temperatures and gasses is shortening the potential lifespan of that equipment. An HVAC engineering contractor was employed to determine the best possible repair to be made on the system. His original engineering estimate for the system was $\$ 500,000$. When staff went out for competitive bidding in May of 2015, the low bid was $\$ 1.5 \mathrm{M}$. Staff decided to do a part of the original plan in FY16. That, in combination with changing several items in the design, should lower the price to complete the project in FY17 to $\$ 1,000,000$. Alternatives Evaluated

1. Budget $\$ 900,000$ to repair the Plant 1 HVAC in FY 17.
2. Continue to operate the facility without fixing the Plant 1 HVAC System.

Alternative Selected

Budget \$1,000,000 to repair the Plant 1 HVAC in FY 17.

Financial Analysis

Repairing the Plant 1 HVAC is considered a mandatory project so no IRR was calculated. The total cost for the repair is estimated to be $\$ 1,000,000$ in FY17.

Non-Financial Benefits

Limiting breaker degradation enhances the safety of the facility.

Recommendation

Staff recommends that $\$ 1,000,000$ be budgeted in FY 17 so that the Plant 1 HVAC can be repaired.

Authority for Expenditure (AFE) Supporting Documentation
 Access Platforms
 Northern California Power Agency

Current Situation and Need

The NCPA geothermal facility has numerous valves, instruments and other devices that have been installed in locations that are difficult to access. Process and equipment considerations determined the optimum location of these devices, rather than accessibility.

NCPA employees have reached these devices using ladders, man-lifts and other equipment. Occasionally, the location of a device and weather conditions have conspired to compromise the safety of employees or delay work.
Rental of the Man lift is costly and when performance issues are suspected there is a delay between the time it is discovered and the delivery of a man lift. This delay can result in additional MW losses. Having the platforms will result in more performance checks which in turn will increase the productivity of the facility.

The installation of platforms in several locations will create easy, permanent access to devices that are currently hard to reach, promote safe work conditions and reduce work delays.

Alternatives Evaluated

1. Install platforms in several locations, to improve access to devices that are currently hard to reach.
2. Do nothing.

Alternative Selected

NCPA Staff recommends Alternative 1 ,

Financial Analysis

The total cost of installing the access platforms is estimated to be $\$ 150 \mathrm{~K}$. This total cost includes:

- $\$ 30 \mathrm{~K}$ for design of the platform structures.
- $\$ 120 \mathrm{~K}$ to install the platforms.

The design of the platforms will take place in the first half of FY2017. The installation of the platforms will take place in the second half of FY2017.

Financial analysis was based on the cost of renting a man lift to do performance checks and the Avoided loss of 2 MW twice per year for 2 days each occurrence due to fewer performance checks and the delay to get a man lift to the facility to check performance is an issue is suspected.

FINANCIAL EVALUATION SUMMARY	
Useful Life (Years):	25.00
IRR:	8%
Payback (years):	12.0
NPV @ 5\%:	35,868
Est. Annual Benefits:	7,197

The primary benefit of installing the access platforms is improved safety, and the project has a 12 year payback due to increase MW production.

Non-Financial Benefits

The platforms will allow safe and permanent access to devices that are currently difficult to reach.

Recommendation

NCPA Staff recommends installing platforms to ensure that there is safe and permanent access to devices that are currently difficult to reach.

Example 1: Capital Cost $=\$ 100,000$, Financed $=50 \%$ Cost of Money @ 5%, $\mathbf{O \& M}=\$ 1000 / \mathrm{yr}$, \mathbf{O} \& increase rate $=3 \%$, Savings $=\$ 7,500$ escalating at 2%, Life of Project 30 years.

Common Inputs:	Value	Units	Comments
Project Capital Cost	(150,000)	\$	Negative
Amount Financed	0.0\%	\%	Applicable for the analysis, even if not borrowed.
Finance Life	25	Years	Term of Loan
Cost of Money	5%	\%	Finance Rate. Currently assume 5\%.
Project Life	25	Years	Usefulu life of Project
NCPA Discount Rate	5\%	\%	Investment Rate. Currently assume 5\%.
O\&M	0	\$/Year	Negative
O\&M Increase Rate in \%	3.0\%	\% per Year	Currently Assume 3\%
Revenue stream		\$/Year	Positive
Benefits escalation in \%	2.0\%	\% per Year	Currently Assume 2\%

	Summary of Cash Flows (PV @ Discount Rate)	Cash Flow																				
Capital Cost		$\begin{aligned} & \text { Beginning } \\ & \text { Year } \end{aligned}$ 1	$\begin{gathered} \text { Ending } \\ \text { Y Yar } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 2 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ending } \\ & \text { Year } \\ & 3 \end{aligned}$	$\begin{gathered} \text { Ending } \\ \text { Y Yar } \\ 4 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 6 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ending } \\ & \text { Year } \\ & 77 \end{aligned}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 88 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 9 \end{gathered}$	$\begin{aligned} & \text { Ending } \\ & \text { Year } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { Ending } \\ & \text { Year } \end{aligned}$ 11	$\begin{aligned} & \text { Ending } \\ & \text { Year } \\ & 12 \end{aligned}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ \text { 13 } \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 16 \end{gathered}$	$\begin{aligned} & \text { Ending } \\ & \text { Year } \\ & 17 \end{aligned}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 18 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ \text { 19 } \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 20 \end{gathered}$
Capital Cost	(144,048)	(25,000)	(125,000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P\&1 Repayment	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Cost	(144,048)	$(25,000)$	$(125,000)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Expenses																						
Operation And Maintenance		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total Expenses	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Benefits																						
Man-ifit Rental	82,484		4,800	4,896	4,994	5,094	5,196	5,300	5,406	5,514	5,624	5,736	5,851	5,968	6,088	6,209	6,333	6,460	6,589	6,721	6,856	6,993
Avoided loss 2 MW 2 days 2 times a year, due to faster Perf checks	97,431	0	6,224	6,329	6,394	6,534	6,706	6,872	7,047	7,227	7,414	7,608	7,812	8,024	8,238	8,452	8,675	8,907	9,148	9,398	9,659	9,930
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0		0	0	0		0	0	0	0	0	0	0	0	0	0	
Total Benefits	179,915		11,024	11,225	11,388	11,628	11,902	12,172	12,453	12,740	13,037	13,345	13,663	13,992	14,325	14,661	15,008	15,367	15,737	16,119	16,515	16,923
Net Cash Flow	35,868	$(25,000)$	(113,976)	11,225	11,388	11,628	11,902	12,172	12,453	12,740	13,037	13,345	13,663	13,992	14,325	14,661	15,008	15,367	15,737	16,119	16,515	16,923
Cumulative Cash Flow			(138,976)	(127,751)	(116,363)	(104,735)	(92,834)	(80,662)	(68,209)	(55,469)	(42,431)	$(29,086)$	(15,423)	$(1,431)$	12,894	27,555	42,563	57,930	73,667	89,786	106,301	123,224

AFE Financial Measurements	Value	Units	Comments
NPV @ Discount Rate	35,868	\$	Total PV Cost + Total PV Expense + PV Total Benefits. $=$ C25 + $\mathrm{C} 30+\mathrm{C} 35$
IRR	7.5\%	\%	Discount rate that results in a net present value of zero of a series of cash flows =\|RR(E37:Al37)
Average Annual Benefits	7,197	\$	Average Yearly Benefits. = C42/C11
Payback	12.0	Years	Number of Years of Negative Accumulative Cash Flow. =COUNTIF(F39:A139,"<0")
Useful Life	25.0	Years	Useful Life of Project =C10
B/C Ratio	1.25	B/C Ratio	Benefit to Cost Ratio $=$ C38/(C26+C3

Authority for Expenditure (AFE) Supporting Documentation
 Plant 1 Auxiliary Steam Pipeline Modification
 Northern California Power Agency

Current Situation and Need

The auxiliary steam pipeline to Plant \#1 comes from one dedicated steam well D-8. If the well is out of service, steam needs to be diverted from the main pipeline to operate the steam ejectors which pull non-condensable gases from the condensers. Eventually, steam production will decline to the point that it will be necessary to do this on a permanent basis. The reliability of the auxiliary steam system is limited by relying on one well to supply steam to the ejectors. Diverting steam production from the main steam pipeline reduces the generation output from the plant.

It is proposed that the auxiliary steam pipeline be modified to bring dedicated steam from more than one well and improve the reliability of the system.

Alternatives Evaluated

1. Modify the Auxiliary Steam Pipeline - Several wells will be tied into the auxiliary steam line and used as necessary to provide steam to the ejectors.
2. Do nothing - Steam production from D-8 will decline until it becomes necessary to supplement steam to the ejectors from the main steam line.

Alternative Selected

The selected alternative is to modify the auxiliary steam pipeline.

Financial Analysis

Assumptions used for the analysis are:

Project Life	20 years
Capital Investment	$\$ 100,000$
Generation Gain	500 MWhrs annually declining at 2% per year
No project financing	
Price Forecast per Power Settlements	

Economic results are:
NPV @ 5\% \$162,021

IRR
Average Annual Benefits
Payback
\$162,021
20.8\%
\$12,863
5 years

Non-Financial Benefits

None

Recommendation

It is recommended that the auxiliary steam pipeline be modified to provide dedicated steam production from more than one well.

Example 1: Capital Cost $=\$ 100,000$, Financed $=50 \%$, Cost of Money @ 5%, $\mathbf{O \& M}=\$ 1000 / \mathrm{yr}$, \mathbf{O} \& increase rate $=3 \%$, Savings $=\$ 7,500$ escalating at 2%, Life of Project 30 years.

Common Inputs:	Value	Un	Comment
Project Capital Cost	(100,000)	\$	Negative
Amount Financed	0.0\%	\%	Applicable for the analysis, even if not borrowed.
Finance Lite	30	Years	Term of Loan
Cost of Money	5\%	\%	Finance Rate. Currently assume 5\%.
Project Life	20	Years	Usefulu life of Project
NCPA Discount Rate	5\%	\%	Investment Rate. Currently assume 5\%.
O\&M	0	\$/Year	Negative
O\&M Increase Rate in \%	3.0\%	\% per Year	Currently Assume 3\%
Revenue stream		\$/Year	Positive
Benefits escalation in \%	2.0\%	\% per Year	Currently Assume 2\%

	Summary of Cash Flows (PV @ Discount Rate)	Cash Flow																				
Capital Cost			Ending Year Year 1	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 3 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 4 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 5 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 6 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 8 \mathbf{8} \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 9 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 13 \end{gathered}$	Ending Year 14	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 15 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 16 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 17 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 19 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 20 \end{gathered}$
Capital Cost	(95,238)		(100,000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
P\&I Repayment	0	0	0	0	,	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Cost	$(95,238)$	0	(100,000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Expenses																						
Operation And Maintenance	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Expenses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Benefits																						
Generation Benefit	257,259	0	4,610	18.416	18,840	19,334	19,773	20,243	20,700	21,167	21,644	22,132	22,631	23,109	23,562	24,024	24,495	24,975	25,465	25,964	26,474	27,808
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total Benefits	257,259	0	4,610	18,416	18,840	19,334	19,773	20,243	20,700	21,167	21,644	22,132	22,631	23,109	23,562	24,024	24,495	24,975	25,465	25,964	26,474	27,808
Net Cash Flow	162,021	0	(95,390)	18,416	18,840	19,334	19,773	20,243	20,700	21,167	21,644	22,132	22,631	23,109	23,562	24,024	24,495	24,975	25,465	25,964	26,474	27,808
Cumulative Cash Flow	-		(95,390)	(76,973)	(58,134)	(38,800)	(19,027)	1,216	21,916	43,083	64,726	86,858	109,489	132,598	156,160	180,184	204,679	229,655	255,120	281,084	307,558	335,365

The following table summarizes the financial measurements required in the AFE. These values are automatically copied to the AFE.

AFE Financial Measurements	Value	Units	Comments
NPV @ Discount Rate	162,021	\$	Total PV Cost + Total PV Expense + PV Total Benefits. =C25+C30+C35
IRR	20.8\%	\%	Discount rate that results in a net present value of zero of a series of cash flows =\|RR(E37:A137)
Average Annual Benefits	12,863	\$	Average Yearly Benefits. = C42/C11
Payback	5.0	Years	Number of Years of Negative Accumulative Cash Flow. =COUNTIF(F39:A139, "<0")
Useful Life	20.0	Years	Useful Life of Project =C10
B/C Ratio	2.70	B/C Ratio	Benefit to Cost Ratio $=$ C38/(C26+C32)

Authority for Budget (AFB) Supporting Documentation
 Boom Truck
 Northern California Power Agency

Current Situation and Need

The NCPA Boom Truck that is presently at the GEO is older and the recent attempts to fix various issues with the truck have not resolved all of the issues. Due to this, the GEO has been renting a truck for our employees or calling a local operator to provide a truck and operator so that maintenance can continue at the facility. At present, staff estimates that when we have a running boom truck, it is used 2-3 times a week at least 40 weeks a year. Renting a truck by the week could lessen that to weeks a year. We have analyzed for the long term vs. owing one for hiring a contractor to provide a truck and operator. The analysis shows that purchasing a truck makes the most economic sense for the facility.

Alternatives Evaluated

1. Replace the older, mechanically unsound vehicle.
2. Rent a Boom Truck to be used at the facility.
3. Hire a contractor to provide a truck and operator when the need arises.

Alternative Selected

Replace the existing Boom Truck and put the older vehicle up for sale per the NCPA surplus procedure.

Financial Analysis

Renting a truck for the long term vs. owing one was analyzed as was hiring a contractor to provide a truck and operator and it was determined that purchasing a truck makes the most economic sense for the facility. The Cost of a newer Boom Truck should be about $\$ 175,000$. The below is the economics based on the contractor providing the boom truck.

AFE Financial Measurements	Value	Units
NPV @ Discount Rate	359,368	\$
IRR	44.0\%	\%
Average Annual Benefits	49,048	\$
Payback	2.0	Years
Useful Life	10.0	Years
B/C Ratio	3.74	B/C Ratio

Non-Financial Benefits

The Safety of the persons driving the vehicle at the GEO.

Recommendation

Staff recommends that $\$ 175,000$ be budgeted in FY 17 so that a Boom Truck can be purchased.

xample 1: Capital Cost $=\$ 100,000$, Financed $=50 \%$, Cost of Money @ 5%, O\&M $=\$ 1000 \mathrm{yr}$, $\mathbf{0}$ \&M increase rate $=3 \%$ Savings $=\$ 7,500$ escalating at 2% Life of Project 30 years.

	$\begin{gathered} \hline \text { Summary of Cash Flows } \\ \text { (PV @ Discount Rate) } \\ \hline \end{gathered}$	Cash Flow																				
Capital Cost		$\begin{aligned} & \text { Beginning } \\ & \text { Year } \end{aligned}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ \quad 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 3 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 13 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 16 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 17 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ \text { No } \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 20 \\ \hline \end{gathered}$
Capital Cost	(175,000)	(175,000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P\&I Repayment	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Cost	(175,000)	$(175,000)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Expenses																						
Operation And Maintenance	43,887	1,000	1,050	2,550	2,678	4,178	4,386	5,886	6,181 ${ }^{\text {] }}$	7,681	8,065	9,565	0	0	0	0	11,088	0	0	0	0	0
Emplyee physical costs/loss of productionn	11,000	1,000	1,050	1,103	1,158	1,216	1,276	1,340	1,407	1,477	1,551	1,629	0	0	0	0	0	0		0	0	0
Other	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Expenses	54,887	2,000	2,100	3,653	3,835	5,393	5,663	7,226	7,588	9,158	9,616	11,194	0	0	0	0	11,088	0	0	0	0	0
Benefits																						
Reduced Rental	477,793	50,000	51,000	52,020	53,060	54,122	55,204	56,308	57,434	58,583	59,755	60,950	0	0	0	0	0	0				
														0	0	0	0	0	0	0	0	
														0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total Benefits	477,793	50,000	51,000	52,020	53,060	54,122	55,204	56,308	57,434	58,583	59,755	60,950	0	0	0	0	0	0	0	0	0	0
Net Cash Flow	357,681	$(123,000)$	53,100	55,673	56,896	59,515	60,867	63,535	65,022	67,741	69,371	72,143	0	0	0	0	11,088	0	0	0	0	0
Cumulative Cash Flow	.		(69,900)	(14,288)	42,668	102,183	163,049	226,584	291,606	359,347	428,718	500,861	500,861	500,861	500,861	500,861	511,949	511,949	511,949	511,949	511,949	511.949

The following table summarizes the financial measuremens required in the AFE. These values are automatically copied to the AFE

AFE Financial Measurements	Value	Units	Comments
NPV @ Discount Rate	357,681	\$	Total PV Cost + Total PV Expense + PV Total Benefits. = $\mathrm{C} 25+\mathrm{C} 30+\mathrm{C} 35$
IRR	45.4\%	\%	Discount rate that results in a net present value of zero of a series of cash flows =\|RR(E377:Al37)
Average Annual Benefits	47,779	\$	Average Yearly Benefits. = $\mathrm{C} 42 / \mathrm{Cl11}$
Payback	2.0	Years	Number of Years of Negative Accumulative Cash Flow. =COUNTIF(F399:Al39,"<0")
Useful Life	10.0 3.98	Years	Useful Life of Project $=C 10$ Benefit o Cost Ratio $=$ C38/

Authority for Expenditure (AFE) Supporting Documentation
 Unit 4 Main Steam Pipeline
 Northern California Power Agency

Current Situation and Need

Steam delivered to the Unit \#4 turbine drops in pressure 3.2 psig from steam separators outside the plant fence line to the turbine building. Numerical modeling and in-house calculations show that approximately half of this pressure drop can be eliminated and approximately 1 MW of generation recovered if the Unit \#4 main steam pipeline is shortened and re-routed directly to the turbine building.

The project will need to be done in three phases due to the long lead time in getting a 48 " valve required for the pipeline.

Phase 1 - A 48" tie-in point on the existing Unit \#4 main steam pipeline will be established and a 36 " branch connection will be relocated. This work will be done during the April 2016 outage to avoid any loss in generation.
Phase 2 - The majority of the new Unit \#4 pipeline will be constructed while Unit \#4 is on line.
Phase 3 - Unit \#4 will be taken off line so that the new pipeline can be connected to the Phase 1 tie-in point and redirected into the Unit \#4 turbine building. Existing valves and flow meter will be relocated with power and instrumentation hooked up. The duration of Phase 3 is expected to take as much as ten days, but may be shorter.

It is proposed that the Unit \#4 main steam pipeline be modified to bring steam directly to the turbine building.

Alternatives Evaluated

1. Modify the Unit \#4 Main Steam Line - The Unit \#4 pipeline will be constructed in phases to take advantage of unit outages. A 1 MW generation gain will be realized.
2. Do nothing - Plant \#2 will continue to incur a 3.2 psig pressure drop from the existing steam piping.

Alternative Selected

The selected alternative is to modify the Unit \#4 main steam pipeline.

Financial Analysis

Assumptions used for the analysis are:

Project Life

Capital Investment
Generation Gain

15 years

\$950,000
1 MW annually declining at 2% per year

No project financing
Price Forecast per Power Settlements
Economic results are:

NPV @ 5\%	$\$ 4,104,163$
IRR	38.5%
Average Annual Benefits	$\$ 365,455$
Payback	3 years

Non-Financial Benefits

None

Recommendation

It is recommended that the Unit \#4 main steam pipeline be shortened and re-routed to go directly to the turbine building.

Example 1: Capital Cost $=\$ 100,000$, Financed $=50 \%$, Cost of Money @ 5%, $\mathbf{O \& M}=\$ 1000 / \mathrm{yr}$, \mathbf{O} \& increase rate $=3 \%$, Savings $=\$ 7,500$ escalating at 2%, Life of Project 30 years.

Common Inputs:	Value	Un	Comment
Project Capital Cost	(950,000)	\$	Negative
Amount Financed	0.0\%	\%	Applicable for the analysis, even if not borrowed.
Finance Lite	30	Years	Term of Loan
Cost of Money	5\%	\%	Finance Rate. Currently assume 5\%.
Project Life	15	Years	Usefulu life of Project
NCPA Discount Rate	5\%	\%	Investment Rate. Currently assume 5\%.
O\&M	0	\$/Year	Negative
O\&M Increase Rate in \%	3.0\%	\% per Year	Currently Assume 3\%
Revenue stream		\$/Year	Positive
Benefits escalation in \%	2.0\%	\% per Year	Currently Assume 2\%

	Summary of Cash Flows (PV @ Discount Rate)	Cash Flow																				
Capital Cost		Beginning Year 1	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 1 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 2 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 4 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 5 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 8 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 12 \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 13 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 14 \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { Ending } \\ \text { Year } \\ 15 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 16 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 17 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 19 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 20 \\ \hline \end{gathered}$
Capital Cost	(919,048)	(300,000)	(650,000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
P\&1 Repayment	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Cost	(919,048)	$(300,000)$	$(650,000)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Expenses																						
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0		0	0	
Total Expenses	(458,619)	0	$(481,550)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Benefits																						
Increased Generation of 1 MW, Unit 4	5,481,829	0	93,676	568,309	562,893	565,185	568,782	521,448	574,908	578,138	581,632	585,392	537,770	593,719	597,741	601,422	605,332	556,066	613,848	618,456	623,301	628,383
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	,	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Benefits	5,481,829	0	93,676	568,309	562,893	565,185	568,782	521,448	574,908	578,138	581,632	585,392	537,770	593,719	597,741	601,422	605,332	556,066	613,848	618,456	623,301	628,383
Net Cash Flow	2,547,206	(300,000)	$(1,037,874)$	568,309	562,893	565,185	568,782	521,448	574,908	578,138	581,632	585,392	537,770	593,719	597,741	601,422	605,332	556,066	613,848	618,456	623,301	628,383
Cumulative Cash Flow	.		$(1,337,874)$	(769,565)	(206,672)	358,513	927,295	1,448,743	2,023,652	2,601,790	3,183,422	3,768,814	4,306,584	4,900,303	5,498,044	6,099,466	6,704,798	7,260,864	7,874,712	8,993,168	9,116,469	9,744,852

The following table summarizes the financial measurements required in the AFE. These values are automatically copied to the AFE.

AFE Financial Measurements	Value	Units	Comments
NPV @ Discount Rate	4,104,163	\$	Total PV Cost + Total PV Expense + PV Total Benefitis. =C25+C30+C35
IRR	38.5\%	$\%$	Discount rate that results in a net present value of zero of a series of cash flows =1RR(E37:A137)
Average Annual Benefits	365,455	\$	Average Yearly Benefits. = C42/C11
Payback	3.0	Years	Number of Years of Negative Accumulative Cash Flow. =COUNTIF(F39:A139, "<0")
Useful Life	15.0	Years	Useful Life of Project =C10
B/C Ratio	3.98	B/C Ratio	Benefit to Cost Ratio $=$ C $38 /(\mathrm{C} 26+\mathrm{C} 32$)

Authority for Budget (AFB) Supporting Documentation
 Well Workover
 Northern California Power Agency

Current Situation and Need

Periodic new well drilling and well workovers are required at the GEO in order to recover the injected water as steam in the most efficient manner. To accomplish this and in order to flatten the yearly budget costs, a system of pre-collection was started so that when drilling was warranted, there was not a requirement for a large amount of money to be allocated in just that year. In the recent past the drought has lessened the amount of water that has been put into the reservoir. As a result of that, the existing injectors have had an opportunity to 'dry out' and increase in temperature. The combination of that and the successful conversion of several producers to "huff and puff" (injection/producers) has allowed us to put off drilling for another year.

Alternatives Evaluated

1. Pre-collect for drilling in 2018
2. Do not pre-collect and ask for a large amount of money in FY2018

Alternative Selected

Pre-collect for drilling in 2018.

Financial Analysis

We have not determined which well will be drilled and with the variation of cost from one well to another, no analysis was done.

Non-Financial Benefits

None

Recommendation

Staff recommends pre-collect for drilling in 2018.

Analial Analysis for Generation Services projects exceeding $\$ 25,00$.

xample 1: Capital Cost $=\$ 100,000$, Financed $=50 \%$, Cost of Money @ 5%, O\&M $=\$ 1000 / \mathrm{yr}$, $\mathbf{0}$ \&M increase rate $=3 \%$, Savings $=\$ 7,500$ escalating at 2% Life of Project 30 years.

	Summary of Cash Flows (PV @ Discount Rate)	Cash Flow																				
Capital Cost		Beginning Year	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 1 \end{gathered}$ 1	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ \quad 2 \\ \hline \end{gathered}$	Ending Year 3	$\begin{array}{\|c} \hline \text { Ending } \\ \text { Yearg } \end{array}$ $\begin{gathered} \text { Year } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 8 \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ \hline \\ \hline \end{gathered}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ending } \\ & \hline \text { Year } \end{aligned}$ $\begin{aligned} & \text { Yar } \\ & 11 \\ & \hline \end{aligned}$	$\underset{\substack{\text { Ending } \\ \text { Year }}}{ }$ Year 12	Ending Year Year 13	Ending Year 14	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 15 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Ending } \\ \text { Year } \\ 16 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Ending } \\ \text { Year } \end{array}$ $\begin{aligned} & \text { ear } \\ & 17 \\ & \hline \end{aligned}$	Ending Year 18	$\begin{gathered} \text { Ending } \\ \text { Year } \end{gathered}$ $\begin{aligned} & \text { Year } \\ & 19 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Ending } \\ \text { Year } \\ 20 \\ \hline \end{gathered}$
Capital Cost	(17,486,995)	0	(3,900,000)	0	0	(3,900,000)	0	0	(3,900,000)	0	0	(3,900,000)	0	0	(3,900,000)	0	0	(3,900,000)	0	0	(3,900,000)	
P\&I Repayment	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total Cost	$(17,486,995)$	0	$(3,900,000)$	0	0	$(3,900,000)$	0	0	$(3,900,000)$	0	0	$(3,900,000)$	0	0	$(3,900,000)$	0	0	$(3,900,000)$	0	0	$(3,900,000)$	
Expenses																						
Operation And Maintenance	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0		
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total Expenses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Benefits																						
Increased Generation of 1 MW, Unit 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Other	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total Benefits	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Net Cash Flow	(17,486,995)	0	$(3,900,000)$	0	0	($3,900,000$)	0	0	$(3,900,000)$	0	0	$(3,900,000)$	0	0	$(3,900,000)$	0	0	$(3,900,000)$	0	0	(3,900,000)	
Cumulative Cash Flow	.		$(3,900,000)$	(3,900,000)	(3,900,000)	(7,800,000)	(7,800,000)	7,800,000)	(11,700,000)	(11,700,000)	11,700,000)	$(15,600,000)$	5,600,000)	(15,600,000)	(19,500,000)	(19,500,000)	19,500,000)	(23,400,000)	[23,400,000)	23,400,000	(27,300,000)	[27,300,000)

The following table summarizes the financial measurements required in the AFE. These values are automatically copied to the AFE,

AFEE Financial Measurements	Value	Units	Comments
NPV @ Discount Rate	N/A	\$	Total PV Cost + Total PV Expense + PV Total Benefits. = $\mathrm{C} 25+\mathrm{C} 30+\mathrm{C} 35$
IRR		\%	Discount rate that results in a net present value of zero of a series of cash flows = IRR(E37: Al37)
Average Annual Benefits	N/A	\$	Average Yearly Benefits. = C42/C11
Payback	N/A	Years	Number of Years of Negative Accumulative Cash Flow. =COUNTIF(F399:A139,"<0")
Useful Lite	N/A	Years	Useful Life of Project =C10
B/C Ratio		B/C Ratio	Benefit to Cost Ratio $=$ C $38 /($ C26 + C32)

Authority for Budget (AFB) Supporting Documentation
 Unit 1 Overhaul
 Northern California Power Agency

Current Situation and Need

The Power Plants at the GEO require periodic Overhauls in order to continue to run efficiently and with a high availability. A six year Overhauls Cycle has been identified as the appropriate time frame between the overhauls. Pre-collecting for the Overhauls has been identified as a way to minimize large yearly budget swings for the members.

Alternatives Evaluated

1. Continue with the six year overhaul cycle and pre-collect in order to minimize yearly budget swings.
2. Do not do overhauls on a six year cycle and wait until the unit fails and then appropriate the necessary money to fix the power plant.

Alternative Selected

Continue with the six year overhaul cycle and pre-collect in order to minimize yearly budget swings.

Financial Analysis

A financial analysis was not completed for this project.

Non-Financial Benefits

The Safety of GEO personnel.

Recommendation

Staff recommends that pre-collection continue for the Unit 1 Overhaul and that they continue to be done on a six year cycle.

nancial Analysis for Generation Services projects exceeding $\$ 25,000$

Example 1: Capital Cost $=\$ 100,000$, Financed $=50 \%$ Cost of Money @ 5%, $\mathbf{8 M}=\$ 1000 / \mathrm{yr}$, O\&M increase rate $=3 \%$, Savings $=\$ 7,500$ escalating at 2% Life of Project 30 years.

The following table summarizes the financial measurements required in the AFE. These values are automatically copied to the AFE

AFE Financial Measurements	Value	Units	Comments
NPV @ Discount Rate	N/A	\$	Total PV Cost + Total PV Expense + PV Total Benefits. =C25+C30+C35
IRR	N/A	\%	Discount rate that results in a net present value of zero of a series of cash flows $=1$ RR(E37:Al37)
Average Annual Benefits	N/A	\$	Average Yearly Benefits. = C42/C11
Payback	N/A	Years	Number of Years of Negative Accumulative Cash Flow. =COUNTIF(F39:Al39,"<0")
Useful Life	N/A	Years	Useful Life of Project =C10
B/C Ratio	N/A	B/C Ratio	Benefit to Cost Ratio $=$ C38/(C26+C32)

Authority for Budget (AFB) Supporting Documentation
 Unit 2 Overhaul
 Northern California Power Agency

Current Situation and Need

The Power Plants at the GEO require periodic Overhauls in order to continue to run efficiently and with a high availability. A six year Overhauls Cycle has been identified as the appropriate time frame between the overhauls. Pre-collecting for the Overhauls has been identified as a way to minimize large yearly budget swings for the members.

Alternatives Evaluated

1. Continue with the six year overhaul cycle and pre-collect in order to minimize yearly budget swings.
2. Do not do overhauls on a six year cycle and wait until the unit fails and then appropriate the necessary money to fix the power plant.

Alternative Selected

Continue with the six year overhaul cycle and pre-collect in order to minimize yearly budget swings.

Financial Analysis

A financial analysis was not completed for this project.

Non-Financial Benefits

The Safety of GEO personnel.

Recommendation

Staff recommends that pre-collection continue for the Unit 2 Overhaul and that they continue to be done on a six year cycle.

nancial Analysis for Generation Services projects exceeding $\$ 25,000$

Example 1: Capital Cost $=\$ 100,000$, Financed $=50 \%$ Cost of Money @ 5%, $\mathbf{8 M}=\$ 1000 / \mathrm{yr}$, O\&M increase rate $=3 \%$, Savings $=\$ 7,500$ escalating at 2% Life of Project 30 years.

The following table summarizes the financial measurements required in the AFE. These values are automatically copied to the AFE

AFE Financial Measurements	Value	Units	Comments
NPV @ Discount Rate	N/A	\$	Total PV Cost + Total PV Expense + PV Total Benefits. =C25+C30+C35
IRR	N/A	\%	Discount rate that results in a net present value of zero of a series of cash flows $=1$ RR(E37:Al37)
Average Annual Benefits	N/A	\$	Average Yearly Benefits. = C42/C11
Payback	N/A	Years	Number of Years of Negative Accumulative Cash Flow. =COUNTIF(F39:Al39,"<0")
Useful Life	N/A	Years	Useful Life of Project =C10
B/C Ratio	N/A	B/C Ratio	Benefit to Cost Ratio $=$ C38/(C26+C32)

Authority for Budget (AFB) Supporting Documentation
 Unit 4 Overhaul
 Northern California Power Agency

Current Situation and Need

The Power Plants at the GEO require periodic Overhauls in order to continue to run efficiently and with a high availability. A six year Overhauls Cycle has been identified as the appropriate time frame between the overhauls. Pre-collecting for the Overhauls has been identified as a way to minimize large yearly budget swings for the members.

Alternatives Evaluated

1. Continue with the six year overhaul cycle and pre-collect in order to minimize yearly budget swings.
2. Do not do overhauls on a six year cycle and wait until the unit fails and then appropriate the necessary money to fix the power plant.

Alternative Selected

Continue with the six year overhaul cycle and pre-collect in order to minimize yearly budget swings.

Financial Analysis

A financial analysis was not completed for this project.

Non-Financial Benefits

The Safety of GEO personnel.

Recommendation

Staff recommends that pre-collection continue for the Unit 4 Overhaul and that they continue to be done on a six year cycle.

nancial Analysis for Generation Services projects exceeding $\$ 25,000$

Example 1: Capital Cost $=\$ 100,000$, Financed $=50 \%$ Cost of Money @ 5%, $\mathbf{8 M}=\$ 1000 / \mathrm{yr}$, O\&M increase rate $=3 \%$, Savings $=\$ 7,500$ escalating at 2% Life of Project 30 years.

The following table summarizes the financial measurements required in the AFE. These values are automatically copied to the AFE

AFE Financial Measurements	Value	Units	Comments
NPV @ Discount Rate	NA	\$	Total PV Cost + Total PV Expense + PV Total Benefits. =C25+C30+C35
IRR	NA	\%	Discount rate that results in a net present value of zero of a series of cash flows $=$ IRR((E37:Al37)
Average Annual Benefits	NA	\$	Average Yearly Benefits. = C42/C11
Payback	NA	Years	Number of Years of Negative Accumulative Cash Flow. =COUNTII(F39:Al39, "<0")
Useful Life	N/A	Years	Useful Life of Project $=$ C10
B/C Ratio	NA	B/C Ratio	Benefit to Cost Ratio $=$ C38/(C26+C32)

