Figure 5. GEOTHERMAL OPERATIONAL PLAN 2016

<table>
<thead>
<tr>
<th>ZONE</th>
<th>UNIT</th>
<th>WELL SITES</th>
<th>DAILY MAX</th>
<th>DAILY MIN</th>
<th>ANNUAL AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1&amp;2</td>
<td>A,C,D,F</td>
<td>57</td>
<td>54</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H,N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>4</td>
<td>B,E,J,P,Q,Y</td>
<td>48</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>105</td>
<td>100</td>
<td>103</td>
</tr>
</tbody>
</table>

(1) DAILY GENERATION VARIES AS FIELD CONDITIONS CHANGE, VALUES FROM GHCS
(2) ANNUAL TARGET RANGE SET BY CHANGES IN PLANT, STEAMFIELD, AVAILABILITY FACTOR AND PLANT OVERHAULS
P-Site Well Pad

Flow – 210 kph of steam
~ 27% of flowrate to Plant #2
Net Generation ~ 11 MW
Kinley Casing Caliper Tool
Production Well P-4, June 2016
Deformation is consistent with every well logged on P-Site
Production Well P-4, June 2016
3D Rendition of the same deformation as the previous slide
P-Site Well Pad

Slope moving downhill
Casing Damage/Repair

- Well Workovers are problematic.
  - Greater the damage, less probability of success

- Repair methods
  - Swedge or mill casing, then line with new casing
  - Set cement plug, sidetrack and re-drill

- Workover costs range $2 to $6 million
Injection System

2014 – 13 Injection Wells
2016 – 10 Injection Wells
NCPA Injection System

Four Injection Wells Damaged and Out of Service

LEGEND

Collection/Pipeline Systems
- Rain Water Collection/Pipeline System
- Condensate Pipeline System
- SE Geysers Effluent Pipeline System

Control Valve (CV)
Block Valve (BV)

F-1 Injection Well
P-9 Effluent Injection Well

NORTH E R N    C A L I F O R N I A    P O W E R    A G E N C Y
## Maintenance Reserves

<table>
<thead>
<tr>
<th>Reserve Activity</th>
<th>Beginning Balance</th>
<th>FY 2018</th>
<th>FY 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1 Overhaul</td>
<td></td>
<td></td>
<td>($1,300,000)</td>
</tr>
<tr>
<td>Unit 2 Overhaul</td>
<td></td>
<td></td>
<td>($1,600,000)</td>
</tr>
<tr>
<td>Well Workovers</td>
<td>$3,982,719</td>
<td></td>
<td>($3,100,000)</td>
</tr>
<tr>
<td>Projected Requirement</td>
<td></td>
<td></td>
<td>($6,000,000)</td>
</tr>
<tr>
<td>Annual Funding Requirement</td>
<td></td>
<td></td>
<td>$2,100,000</td>
</tr>
<tr>
<td>Balance</td>
<td>$6,232,719</td>
<td>$6,232,719</td>
<td>$2,332,719</td>
</tr>
</tbody>
</table>
Summary

- **P-Site** – Ongoing well deformation ~ 1000 ft.

- Plan to monitor the wells and develop plans to repair if flow becomes inhibited.

- **Injection System** – Four wells are out of service since 2014.
  - Workover existing well, $2 to $6 million
  - Drill new “SLR” well, $1 to $2 million

- **Maintenance Reserve** - $6.2 million to cover drilling and overhauls in FY2019